1 引言 步进电动机是一种将离散的电脉冲信号转化为相应角位移或线位移的电磁机械装置,它输出的角位移与输入的脉冲数成正比,是一种输入与输出脉冲对应的增量驱动元件。它具有转矩大、惯性小、响应频率高等优点,已经在工业上得到广泛的应用。但其步矩角较大,一般为1.5~3°,往往满足不了某些高精度定位、精密加工等方面的要求。
实现细分驱动是减小步矩角、提高步进分辨率、增加电动机运行平稳的一种行之有效的方法。目前步进电动机细分驱动控制,多采用量化的梯形波、正弦波作为细分驱动的电流波形,但实际上这些电流波形一般在步进电动机上均不能得到满意的细分精度。
在合理选择电流波形的基础上,提出用AT89C52单片机控制实现的步进电动机斩波恒流细分驱动方案,其运行功率小,可靠性高,通用性好,细分精度高,具有很强的实用性。
2 细分电流波形的选择及量化 步进电动机的细分控制,从本质上讲是通过对的励磁绕组中的电流控制,使步进电动机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电动机步矩角的细分。一般情况下,合成磁场矢量的幅值决定了步进电动机旋转力矩的大小,相邻两个合成磁场矢量之间的夹角大小决定了步矩角的大小。因此,想要实现对步进电机的恒力矩均匀细分控制,必须合理控制步进电机绕组中的电流,使电动机内部合成磁场的幅值恒定,而且每个进给脉冲所引起的合成磁场的角度变化也要均匀。我们知道在空间彼此相差2π/m的m 相绕组,分别通以相位上差2π/m而幅值相同的正弦电流,则合成的电流矢量便在空间做旋转运动,且幅值保持不便。这一点对于反映式步进电动机来说比较困难,因为反应式步进电动机来说比较困难,因为反映式步进电动机的旋转磁场只与绕组电流的****值有关,而与电流的正反流向无关。以比较经济合理的方式对步进电机实现步矩角的任意细分,绕组电流波形宣采用如图1所示的形式

其中,α为电动机转子偏离参考点的角度。 ib滞后于ia 2π/3, ic超前于ia 2π/3。此时,合成电流矢量在所有区间
 ,从而保证合成磁场幅值的恒定,实现电动机的恒转矩,而步进电动机在这种情况下也最平稳。将绕组电流根据细分倍数均匀量化后,所得细分步矩角也是均匀的。为了进一步得到更加均匀的细分步矩角,可以通过实验测取一组在通入量化电流波形时,步进电动机细分步矩的数据,然后对其误差进行插值补偿,求得实际的补偿电流曲线,这些工作大部分可以由计算机来完成。在取得矫正后的量化电流波形之后,以相应的数字量储存于E?PROM 中的不同区域,量化的程度决定了细分驱动的分辨率。
3 细分驱动方案及硬件实现 斩波恒流细分驱动的方案的原理为:由单片机输出 E?PROM 中储存的细分电流控制信号,经D/A转换为模拟电压信号,再取样信号进行比较,形成斩波控制信号,控制各功率管前级驱动电路的导通和关断,实现绕组中电流的闭环控制,从而实现步矩的精确细分。系统原理框图如图2所示。

3.1 控制电路 控制电路主要由AT89CT52单片机、驱动电路、D/A转换、E?PROM及可编程键盘/显示控制器Intel8279等组成,单片机是的核心。受控步进电动机的细分倍数、运行脉冲、正反转、运行速度、单次运行线位移、启/停等的控制即可由键盘输入,也可通过与上位机的串行通信接口由上位机设置。状态显示提供当前通电电动机、机电流大小、电动机运行时间、正反转、当前运行速度、线位移及相关计数等的显示,并将工作状态和数据传送给上位机。
传感器(霍尔传感器)由于检测计数器的当前值。单片机的主要功能是输出E?PROM中储存的细分电流控制信号进行D/A转换。根据转换精度的要求,D/A转换器即可以选择8位的,也可以选择12位的。本驱动的控制器选用的是8位的D/A转换器MAX516。MAX516把4个D/A转换器与4个比较器组合在单个的CMOS IC(DIP20封装)上4个D/A转换器共享一个参考输入电压UREF均可采用下式表示 UDACi=UREFN/256 式中 N=0,1,…,255
N对应于8位的DAC输入码D0~D7(此处为细分电流控制信号)。通过、调节UREF的变化范围,便可调节步进电动机绕组中电流的幅值。
3.2 功率驱动电路 工作中,步进电机组分电流控制信号的D/A转换值Ui输入到MAX516内部各比较器COMPi的
|