各种电机的T- 曲线
(1)传统的选择方法
这里只考虑电机的动力问题,对于直线运动用速度v(t),加速度a(t)和所需外力F(t)表示,对于旋转运动用角速度 (t),角加速度 (t)和所需扭矩T(t)表示,它们均可以表示为时间的函数,与其他因素无关。很显然。电机的****功率P电机,****应大于工作负载所需的峰值功率P峰值,但仅仅如此是不够的,物理意义上的功率包含扭矩和速度两部分,但在实际的传动机构中它们是受限制的。用 峰值,T峰值表示****值或者峰值。电机的****速度决定了减速器减速比的上限,n上限= 峰值,****/ 峰值,同样,电机的****扭矩决定了减速比的下限,n下限=T峰值/T电机,****,如果n下限大于n上限,选择的电机是不合适的。反之,则可以通过对每种电机的广泛类比来确定上下限之间可行的传动比范围。只用峰值功率作为选择电机的原则是不充分的,而且传动比的准确计算非常繁琐。
(2)新的选择方法
一种新的选择原则是将电机特性与负载特性分离开,并用图解的形式表示,这种表示方法使得驱动装置的可行性检查和不同系统间的比较更方便,另外,还提供了传动比的一个可能范围。这种方法的优点:适用于各种负载情况;将负载和电机的特性分离开;有关动力的各个参数均可用图解的形式表示并且适用于各种电机。因此,不再需要用大量的类比来检查电机是否能够驱动某个特定的负载。
在电机和负载之间的传动比会改变电机提供的动力荷载参数。比如,一个大的传动比会减小外部扭矩对电机运转的影响,而且,为输出同样的运动,电机就得以较高的速度旋转,产生较大的加速度,因此电机需要较大的惯量扭矩。选择一个合适的传动比就能平衡这相反的两个方面。通常,应用有如下两种方法可以找到这个传动比n,它会把电机与工作任务很好地协调起来。一是,从电机得到的****速度小于电机自身的****速度 电机,****;二是,电机任意时刻的标准扭矩小于电机额定扭矩M额定。
2、一般伺服电机选择考虑的问题
(1)电机的****转速
电机选择首先依据机床快速行程速度。快速行程的电机转速应严格控制在电机的额定转速之内。
式中, 为电机的额定转速(rpm);n为快速行程时电机的转速(rpm);为直线运行速度(m/min);u为系统传动比,u=n电机/n丝杠;丝杠导程(mm)。
(2)惯量匹配问题及计算负载惯量
为了保证足够的角加速度使系统反应灵敏和满足系统的稳定性要求, 负载惯量JL应限制在2.5倍电机惯量JM之内,即。
式中, 为各转动件的转动惯量,kg.m2;为各转动件角速度,rad/min; 为各移动件的质量,kg;为各移动件的速度,m/min; 为伺服电机的角速度,rad/min。
(3)空载加速转矩
空载加速转矩发生在执行部件从静止以阶跃指令加速到快速时。一般应限定在变频驱动系统****输出转矩的80% 以内。
式中, 为与电机匹配的变频驱动系统的****输出转矩(N.m);为空载时加速转矩(N.m);为快速行程时转换到电机轴上的载荷转矩(N.m);为快速行程时加减速时间常数(ms)。
(4)切削负载转矩
在正常工作状态下,切削负载转矩 不超过电机额定转矩 的80%。
式中, 为****切削转矩(N.m);D为****负载比。
(5)连续过载时间
连续过载时间 应限制在电机规定过载时间之内。
3、根据负载转矩选择伺服电机
根据伺服电机的工作曲线,负载转矩应满足:当机床作空载运行时,在整个速度范围内,加在伺服电机轴上的负载转矩应在电机的连续额定转矩范围内,即在工作曲线的连续工作区;****负载转矩,加载周期及过载时间应在特性曲线的允许范围内。加在电机轴上的负载转矩可以折算出加到电机轴上的负载转矩。
式中,为折算到电机轴上的负载转矩(N.m);F为轴向移动工作台时所需的力(N);L为电机每转的机械位移量(m);为滚珠丝杠轴承等摩擦转矩折算到电机轴上的负载转矩(N.m);为驱动系统的效率。
式中, 为切削反作用力(N);为齿轮作用力(N);W为工作台工件等滑动部分总重量(N);为由于切削力使工作台压向导轨的正压力(N); 为摩擦系数。无切削时,。
计算转矩时下列几点应特别注意。
(a)