由于bldcm采用方波电流驱动,因此不能用坐标变换的方法来分析电机的启动转矩。这里对每换相区域取平均转矩的方法来进行分析。
因此,上文电机正常启动的条件变为:
i.启动时,电机平均转矩方向与给定转向一致;
ii.转动后,平均转矩的方向保持不变。
当满足条件ii,但不满足条件i时电机将发生反转;当条件ii不满足时电机不能转动。
下面就针对上文提出的两种故障情况加以分析。
由bldcm的控制方法知,任意时刻(这里不考虑换相时间)只有两相通电,且其反电动势极性相反。因此,如果将通电两相互换,其产生的转矩就反向。对于第一类故障,从时间上分,可以分两种情况,其一是电动势过零相由于接错而通过了电流。针对模式2,在图3的90°~150°区间,由于a、b两相互换,b相平均转矩为零。此时,平均转矩由c相决定,其方向与给定转向一致。其二当c相发生电动势过零时,a、b两相电流与反电势方向相反,产生的平均转矩与给定转向相反,如图3的210°~270°区间。从而无法满足上文提出了条件ii,从而电机无法启动。
对于第二类故障,由于三相都接错,因此在任何时刻对于反电动势过零相都存在电流,且在该扇区内的平均转矩为零。电机的平均转矩由另一电流相决定。针对模式5,在30°~90°的换相区间内,c相反电势过零,其平均转矩为零。而b相通入与其反电动势相反的电流,从而产生了反向平均转矩。与30°~90°区间类似,对于任意一个换相区间,由于反电动势过零相均通入了电流,且其平均转矩为零。而由于相序的错误,另一电流相产生的平均转矩必为反向转矩,从而满足条件ii,不满足条件i,电机反向转动。
这里需要指出的是,在第二类故障中,由于反电动势过零相不产生平均转矩,因此在同样负载下,此类故障时电机电流会增加较多。
故障检测原理
检测原理分析
对于永磁电机来说,当定子合成电流矢量的方向与转子磁场的方向不重合时,必然存在电磁转矩。该转矩迫使电机转向合成电流矢量的方向。因此,在电机转动过程中,需要实时的改变定子输出电流矢量的方向,从而使电磁转矩保持不变。对bldcm来说,当三相全桥电路输出电流矢量不变时,电机转子就会转动到该处。如图3中当t3、t6管始终导通时,电机转子就会转到a相绕组和b相绕组反轴线的中线处,并由此可以获得霍尔元件的状态。根据霍尔信号状态的不同可以判断出实际的连接序列。图4是输出的6个电流矢量方向和霍尔信号状态的对应关系。图4中内层的数字代表了霍尔信号的状态,外层标注了开关管的导通状态。
这里通过控制输出电压矢量来获得相应的电流矢量。当发生相序故障时,本文中使开关管t3、t6导通,此时输出的电流矢量位于第4扇区,如果没有相序故障,此时霍尔信号的状态为4。表2列出了六中不同连接方式对应的霍尔信号状态。
联系我们
电话:18801063276(张小菊)
QQ:928221169
淘宝:http://zgbjdj.com/news2.asp?id=9440 |